The Dew Point and Frost Point Calculator determine the temperature at which air becomes saturated with moisture using the Magnus-Tetens formula. By entering the air temperature and relative humidity, users can calculate the dew point, which indicates when condensation begins, and the frost point, which predicts sublimation into ice when the dew point is below freezing. Outputs are provided in Celsius, Fahrenheit, and optionally Kelvin. The tool is ideal for meteorological, scientific, and practical applications.
The dew point and frost point are calculated using the Magnus-Tetens formula. The steps are as follows:
\[ \alpha = \frac{A \cdot T}{B + T} + \ln\left(\frac{\text{RH}}{100}\right) \]
\[ T_d = \frac{B \cdot \alpha}{A - \alpha} \]
If the dew point temperature is below freezing (0°C), the frost point (\( T_f \)) is calculated as: \[ T_f = T_d - \left(0.66 \cdot T_d + 0.16\right) \]
Given:
Step 1: Calculate \( \alpha \):
\[ \alpha = \frac{17.62 \cdot 21}{243.12 + 21} + \ln\left(\frac{60}{100}\right) \] \[ \alpha = \frac{370.02}{264.12} + \ln(0.6) \] \[ \alpha \approx 1.4 - 0.511 = 0.889 \]
Step 2: Calculate \( T_d \):
\[ T_d = \frac{243.12 \cdot 0.889}{17.62 - 0.889} \] \[ T_d = \frac{216.08}{16.731} \] \[ T_d \approx 12.91^\circ\text{C} \]
Result: The dew point is approximately \( 12.91^\circ\text{C} \).
Given:
Step 1: Calculate \( \alpha \):
\[ \alpha = \frac{17.62 \cdot -4}{243.12 - 4} + \ln\left(\frac{60}{100}\right) \] \[ \alpha = \frac{-70.48}{239.12} + \ln(0.6) \] \[ \alpha \approx -0.2947 - 0.5108 = -0.8055 \]
Step 2: Calculate \( T_d \):
\[ T_d = \frac{243.12 \cdot -0.8055}{17.62 - (-0.8055)} \] \[ T_d = \frac{-195.74}{18.4255} \] \[ T_d \approx -10.62^\circ\text{C} \]
Step 3: Adjust to Frost Point (\( T_f \)):
\[ T_f = T_d - (0.66 \cdot T_d + 0.16) \] \[ T_f = -10.62 - (0.66 \cdot -10.62 + 0.16) \] \[ T_f = -10.62 - (-6.9992 + 0.16) \] \[ T_f = -10.62 - (-6.8392) \] \[ T_f \approx -3.78^\circ\text{C} \]
Result: The frost point is approximately \( -3.78^\circ\text{C} \).
These calculations demonstrate how the Magnus-Tetens formula is used to compute dew and frost points for given atmospheric conditions.