Heel Cut Length Calculator - Metric (Rafter Depth and Top Plate Width in mm)

This calculator determines a rafter's heel cut length and seat cut width based on the roof pitch, rafter depth, and top plate width. The heel cut is the vertical cut at the bottom end of the rafter, where it sits on the wall's top plate, and the seat cut is the horizontal cut that allows the rafter to rest flat on the plate.

The calculator works with two pitch options:
  • Rise over 12 (e.g., 8 in 12)
  • Degrees (e.g., 33.69°)

If you enter the roof pitch in one format, the calculator automatically converts and displays it in the other.

The seat cut width is directly linked to the allowable maximum notch depth at the rafter's bottom end, typically 1/3 of the rafter depth. This ensures the rafter meets framing standards and maintains strength.

The calculator also compares the seat cut width to the top plate width, ensuring the seat cut doesn't exceed the width of the top plate. If it does, the seat and heel cut are adjusted to fit.

Heel Cut Length Calculator (Metric)



in 12

mm

mm

Results



mm

mm

mm

mm

Calculator

  1. select the preferred method for entering the roof pitch - rise over 12 or in degrees.
  2. the chosen roof pitch value (the calculator will auto-fill the other pitch format for reference in the results)
  3. enter the rafter depth in millimetres
  4. the top plate width in millimetres

Results

  1. converted pitch (if you input rise over 12, you get degrees, and vice versa)
  2. heel cut length in millimetres
  3. initial seat cut width (in millimetres, before adjustment for top plate)
  4. final seat cut width (in millimetres, after adjustment for top plate if needed)
  5. adjusted heel cut length (in millimetres, if seat cut had to be shortened to fit the top plate)

Heel Cut Length Calculator - Formulas and Example Calculation

Inputs:

  • Roof Pitch = 8
  • Rafter Depth = \(11 \frac{7}{8}\) in
  • Top Plate Width = \(5 \frac{1}{2}\) in
  • Fraction Precision = 16

Formulas Used

Slope Calculation

\[ \text{slope} = \frac{\sqrt{\text{pitch}^2 + 12^2}}{12} \]

Maximum Heel Cut Length

\[ \text{heel cut}_{\text{max}} = \frac{\text{rafter depth}}{3} \]

Initial Seat Cut Calculation (Before Adjustment)

\[ \text{seat cut}_{\text{initial}} = \frac{\text{heel cut}_{\text{max}}}{\text{slope}} \]

Heel Cut Calculation

\[ \text{heel cut} = \sqrt{(\text{seat cut} \times \text{slope})^2 - \text{seat cut}^2} \]

Notch Size Calculation

\[ \text{notch size} = \sqrt{\text{seat cut}^2 + \text{heel cut}^2} \]

Adjusted Seat Cut (If Exceeding Top Plate Width)

\[ \text{seat cut}_{\text{final}} = \min(\text{seat cut}_{\text{initial}}, \text{top plate width}) \]

Adjusted Heel Cut

\[ \text{heel cut}_{\text{adjusted}} = \sqrt{(\text{seat cut}_{\text{final}} \times \text{slope})^2 - \text{seat cut}_{\text{final}}^2} \]

Step-by-Step Example Calculation

Step 1: Compute Slope Factor

\[ \text{slope} = \frac{\sqrt{8^2 + 12^2}}{12} = \frac{\sqrt{64 + 144}}{12} = \frac{\sqrt{208}}{12} \approx 1.198 \]

Step 2: Compute Maximum Heel Cut

\[ \text{heel cut}_{\text{max}} = \frac{11.875}{3} \approx 3.96 \text{ in} \]

Step 3: Compute Initial Seat Cut

\[ \text{seat cut}_{\text{initial}} = \frac{3.96}{1.198} \approx 3.31 \text{ in} \]

Step 4: Compute Heel Cut

\[ \text{heel cut} = \sqrt{(3.31 \times 1.198)^2 - 3.31^2} \] \[ = \sqrt{(3.97)^2 - 3.31^2} \] \[ = \sqrt{15.76 - 10.96} = \sqrt{4.80} \approx 2.19 \text{ in} \]

Step 5: Compute Notch Size

\[ \text{notch size} = \sqrt{3.31^2 + 2.19^2} \] \[ = \sqrt{10.96 + 4.80} = \sqrt{15.76} \approx 3.97 \text{ in} \]

Step 6: Adjust Seat Cut (If Exceeding Top Plate Width)

Since: \[ \text{seat cut}_{\text{initial}} = 3.31 \text{ in} < \text{top plate width} = 5.5 \text{ in} \] No adjustment needed: \[ \text{seat cut}_{\text{final}} = 3.31 \text{ in} \]

Final Results

\[ \begin{aligned} \text{Heel Cut Length} &= 2 \frac{3}{16} \text{ in} \\ \text{Initial Seat Cut Width (Before Adjustment)} &= 3 \frac{5}{16} \text{ in} \\ \text{Final Seat Cut Width} &= 3 \frac{5}{16} \text{ in} \\ \text{Adjusted Heel Cut (if seat cut exceeds top plate width)} &= 2 \frac{3}{16} \text{ in} \end{aligned} \]


Heel Cut Length Calculator - Corrected Math Formulas

Example 1: Using Roof Pitch in Rise over 12

Inputs:

  • Roof Pitch = 8 in 12
  • Rafter Depth = 235 mm
  • Top Plate Width = 140 mm

Step 1: Convert Roof Pitch to Degrees

\[ \theta = \tan^{-1}\left(\frac{\text{rise}}{12}\right) \] \[ \theta = \tan^{-1}\left(\frac{8}{12}\right) = \tan^{-1}(0.6667) \approx 33.69^\circ \]

Step 2: Calculate Roof Slope

\[ \text{slope} = \frac{\sqrt{rise^2 + run^2}}{run} \] \[ \text{slope} = \frac{\sqrt{8^2 + 12^2}}{12} = \frac{\sqrt{64 + 144}}{12} = \frac{\sqrt{208}}{12} = 1.20185 \]

Step 3: Calculate Maximum Notch Depth

\[ \text{maxNotch} = \frac{\text{rafter depth}}{3} = \frac{235}{3} = 78.3333 \ \text{mm} \]

Step 4: Initial Seat Cut Width

\[ \text{initialSeatCut} = \frac{\text{maxNotch}}{\text{slope}} = \frac{78.3333}{1.20185} = 65.18 \ \text{mm} \]

Step 5: Heel Cut Length

\[ \text{heelCut} = \sqrt{(initialSeatCut \cdot slope)^2 - initialSeatCut^2} \] \[ = \sqrt{(65.18 \cdot 1.20185)^2 - 65.18^2} = \sqrt{(78.3333)^2 - (65.18)^2} = \sqrt{6135.14 - 4259.77} = \sqrt{1875.37} = 43.45 \ \text{mm} \]

Step 6: Final Seat Cut and Adjusted Heel Cut

If: \[ \text{topPlateWidth} = 140 \ \text{mm} \] Since: \[ 65.18 \leq 140 \] The seat cut fits, so no adjustment is needed. Final outputs:

  • Heel Cut Length = \(43.45 \ \text{mm}\)
  • Initial Seat Cut Width = \(65.18 \ \text{mm}\)
  • Final Seat Cut Width = \(65.18 \ \text{mm}\)
  • Adjusted Heel Cut Length = \(43.45 \ \text{mm}\)


Example 2: Using Roof Pitch in Degrees

Inputs:

  • Roof Pitch = 33.69°
  • Rafter Depth = 235 mm
  • Top Plate Width = 140 mm

Step 1: Convert Degrees to Rise over 12

\[ \text{rise} = 12 \cdot \tan(\theta) \] \[ \text{rise} = 12 \cdot \tan(33.69°) = 12 \cdot 0.6667 = 8.0004 \approx 8 \ \text{inches} \] This confirms the pitch converts correctly back to rise over 12.

Step 2: Repeat Steps 2 to 6 from Example 1

Since the slope and dimensions are the same, the rest of the process (seat cut, heel cut) produces the exact same results:

  • Heel Cut Length = \(43.45 \ \text{mm}\)
  • Initial Seat Cut Width = \(65.18 \ \text{mm}\)
  • Final Seat Cut Width = \(65.18 \ \text{mm}\)
  • Adjusted Heel Cut Length = \(43.45 \ \text{mm}\)


Summary of Key Formulas

  • Convert rise over 12 to slope: \[ \text{slope} = \frac{\sqrt{rise^2 + run^2}}{run} \]
  • Convert rise over 12 to degrees: \[ \theta = \tan^{-1}\left(\frac{\text{rise}}{12}\right) \]
  • Convert degrees to rise over 12: \[ \text{rise} = 12 \cdot \tan(\theta) \]
  • Initial seat cut width: \[ \frac{\text{maxNotch}}{\text{slope}} \]
  • Heel cut length: \[ \sqrt{(initialSeatCut \cdot slope)^2 - initialSeatCut^2} \]
  • Maximum notch: \[ \frac{\text{rafter depth}}{3} \]

This calculator helps accurately determine critical rafter cuts for roof framing in metric construction projects. It helps roof framers and carpenters quickly work out correct seat and heel cuts without manually applying the trigonometry on-site.

If you have any questions or comments please Contact Us
Privacy Policy
© 1998, VmNet.